Talent.com
This job offer is not available in your country.
GenAI / AI Agent Developer

GenAI / AI Agent Developer

BayRock LabsKalyan-Dombivli, IN
19 hours ago
Job description

Build production-ready Generative AI applications using Large Language Models (LLMs) and AI agents. Implement RAG systems, prompt engineering, and multi-agent workflows for intelligent automation. Key Responsibilities

  • Design and implement LLM-powered applications and AI agents
  • Build RAG (Retrieval Augmented Generation) systems with vector databases
  • Develop advanced prompt engineering strategies and templates
  • Create multi-agent systems with tool integration and orchestration
  • Implement document processing pipelines and knowledge base ingestion
  • Optimize LLM inference for cost, latency, and quality
  • Integrate LLMs with business workflows and APIs
  • Evaluate LLM outputs and implement guardrails and safety measures Required Skills LLM & Generative AI :
  • Deep understanding of Large Language Models (GPT, Claude, Llama)
  • Prompt engineering techniques (zero-shot, few-shot, chain-of-thought)
  • RAG architecture and implementation patterns
  • Context management and token optimization
  • Fine-tuning and parameter-efficient methods (LoRA, QLoRA)
  • Understanding of transformer architecture and attention mechanisms AI Agents & Orchestration :
  • Agent frameworks and autonomous systems
  • Tool calling and function integration
  • Multi-agent communication and coordination
  • Planning, reasoning, and reflection patterns
  • Memory management for conversational AI Vector Search & Embeddings :
  • Embedding models and semantic search
  • Vector database operations and optimization
  • Similarity search and retrieval strategies
  • Chunking strategies and document preprocessing Required Tech Stack LLM Frameworks & APIs :
  • LLM Providers : OpenAI API (GPT-4, GPT-3.5), Anthropic (Claude), OpenRouter
  • Frameworks : LangChain, LlamaIndex, LiteLLM, Haystack
  • Agent Frameworks : AutoGPT, LangGraph, CrewAI etc
  • Open Source LLMs : Llama 3, Mistral, Mixtral (via HuggingFace) etc Vector Databases & Search :
  • Vector DBs : Pinecone, Weaviate, Chroma, Qdrant, Milvus (any of one)
  • Embeddings : OpenAI Embeddings, Sentence Transformers, Cohere
  • Search : Elasticsearch, OpenSearch Development Tools :
  • Languages : Python (expert)
  • Web Frameworks : FastAPI, Flask, Streamlit
  • Document Processing : LangChain Document Loaders, Unstructured, PyPDF2
  • NLP Libraries : spaCy, NLTK, Hugging Face Transformers MLOps & Deployment :
  • Model Serving : vLLM, Ray Serve, TGI (Text Generation Inference)
  • Monitoring : LangSmith, Weights & Biases
  • Containerization : Docker, Kubernetes
  • Version Control : Git Cloud & Infrastructure :
  • Cloud Providers : AWS (Bedrock, Lambda), Azure (OpenAI Service), GCP
  • APIs : REST, WebSocket, GraphQL
  • Caching : Redis Preferred Qualifications
  • Bachelor's / Master's in Computer Science, AI, NLP, or related field
  • Experience fine-tuning LLMs (LoRA, full fine-tuning)
  • Knowledge of LLM evaluation frameworks (ROUGE, BLEU, BERTScore)
  • Contributions to LLM / GenAI open-source projects
  • Experience with multi-modal models (vision, audio) What Success Looks Like
  • Production GenAI applications handling real user traffic
  • High-quality LLM outputs with low hallucination rates
  • Cost-optimized inference with acceptable latency
  • RAG systems providing accurate, relevant context
  • Robust agent systems completing complex multi-step tasks
  • Well-structured prompts and reusable templates
Create a job alert for this search

Ai Developer • Kalyan-Dombivli, IN