Job Overview :
We are seeking a skilled GenAI App Developer (or Full Stack Developer , Python Backend Developer , API Developer , Prompt Engineer ) with expertise in API development , backend logic , machine learning , and NLP to contribute to large-scale GenAI applications . You'll work on API integrations , system performance optimization, and developing multi-agent workflows, all within a dynamic, collaborative environment.
Required Qualifications :
- Proven experience in API development (e.g., FastAPI , Flask , Django ).
- Strong knowledge of Python , machine learning ( PyTorch ), and NLP (e.g., spaCy ).
- Expertise in API authentication (OAuth, API keys ) and API documentation (Swagger).
- Experience with task queues ( Celery ) and multi-agent workflows .
- Hands-on experience with databases (MySQL, PostgreSQL , BigQuery , NoSQL ).
- Familiarity with caching (Redis, Memcached) and cloud platforms ( AWS , Google Cloud , Azure ).
Key Responsibilities :
API Integration & Development :
Identify and define API integration points , ensuring clear documentation.Design, implement, and test API endpoints (e.g., / generate, / status).Auto-generate API documentation using FastAPI & Swagger .Implement rate limiting ( Flask-Limiter ) and authentication ( OAuth , API keys ).LLM & NLP Integration :
Develop prompting logic for Large Language Models (LLMs) to ensure accurate responses.Integrate machine learning frameworks (e.g., PyTorch ) and NLP libraries (e.g., spaCy ).Design and implement multi-agentic workflows using patterns like actor model , publish-subscribe , and client-server .Multi-Agentic System Design :
Build and coordinate multi-agentic systems , ensuring efficient task delegation, communication, and failure handling across agents.Develop distributed task management using tools like Celery and Kubernetes .Testing & Debugging :
Write unit / integration tests with Pytest .Set up logging and monitoring for system health and debugging.Database & Caching :
Integrate with MySQL , PostgreSQL , NoSQL (e.g., BigQuery , MongoDB ), and vector databases (e.g., Pinecone ).Implement caching strategies (e.g., Redis , Memcached ) to optimize performance.Security & Compliance :
Ensure secure API access and data protection (OAuth, API keys , input validation).Highly Desirable Qualifications :
Experience with vector databases (e.g., Pinecone , Weaviate, Cloud-based AI search ( Azure AI Search ).Knowledge of CI / CD pipelines and containerization (e.g., Docker , Kubernetes ).Familiarity with API design tools (e.g., Postman ) and rate limiting ( Flask-Limiter ).Tools & Technologies :
API Frameworks : FastAPI , Flask , DjangoMachine Learning & NLP : PyTorch , spaCyTask Management : CeleryDatabases : MySQL , PostgreSQL , BigQuery , MongoDB , Pinecone , WeaviateCaching : Redis , MemcachedCloud Platforms : AWS , Google Cloud , AzureVersion Control : GitSecurity & Monitoring : OAuth , API keys , Python logging module